A bold new effort designed to speed the pace of biotechnology and scientific discovery and development
Learn more about the Phil and Penny Knight Campus for Accelerating Scientific Impact at Accelerate.uoregon.edu.

<table>
<thead>
<tr>
<th>Page</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>03</td>
<td>Media Fact Sheet</td>
</tr>
<tr>
<td>07</td>
<td>History</td>
</tr>
<tr>
<td>08</td>
<td>Key Team Bios</td>
</tr>
<tr>
<td>10</td>
<td>Faculty Bios</td>
</tr>
<tr>
<td>11</td>
<td>Student Bios</td>
</tr>
<tr>
<td>12</td>
<td>Key Stories</td>
</tr>
</tbody>
</table>
The Knight Campus is a bold new model that accelerates the cycle of scientific discovery and development through world-class research, training, and entrepreneurship in an open and collaborative cross-disciplinary environment.

THE GRAND OPENING EVENT

The Phil and Penny Knight Campus for Accelerating Scientific Impact is celebrating its opening via a virtual event on Wednesday, December 2, 2020, at 5:30 p.m. PST. Event information: accelerate.uoregon.edu/grand
FACT SHEET

Phil and Penny Knight Campus for Accelerating Scientific Impact

90% OF GRADUATES LAUNCH CAREERS IN THEIR FIELDS WITHIN THREE MONTHS OF GRADUATING FROM THE KNIGHT CAMPUS INTERNSHIP PROGRAM

Media Fact Sheet:

SUPPORTING A CYCLE OF IMPACT

This world-class facility was designed to support the impact cycle, a foundational idea of the Knight Campus best represented by the concepts of discovery, development, and deployment. The building will be the home of discovery at the lab bench; the development of biomedical devices and therapies; and the deployment of new technologies to the marketplace, where products, innovations, or cures impact people’s lives.

The building’s design accelerates the impact cycle by bringing people together and encouraging collaboration. Teams of scientists, researchers and students blur lines between disciplines and pursue discovery in research neighborhoods with open work spaces and labs that encourage interaction. Research then moves to the development stage, with cutting-edge equipment for rapid prototyping and finally to the deployment phase, with an innovation center to maximize the commercial potential and ensure the product, therapy or treatment reaches as many people possible.

Knight Campus faculty members have already entered the deployment stage, with start-up companies focused on 3D-printing of patient-specific orthopedic implants, implantable screws, and other devices with built-in sensors to monitor healing.

NEXT-GENERATION SCIENTISTS

The Knight Campus serves graduate students with a graduate internship program and a doctoral program in bioengineering—the first engineering degree offered by the UO—in partnership with Oregon State University. The current Knight Campus Graduate Internship Program is an evolution of a pair of long-standing successful programs at the UO: The Master’s Industrial Internship Program and the Bioinformatics and Genomics Master’s Program. The internship program provides a career-focused accelerated master’s degree, with a nine-month hands-on internship; 90% of graduates launch careers in their fields within three months of graduating. The Knight Campus Undergraduate Scholars Program offers select undergrads a rare opportunity to be immersed in comprehensive research, pairing promising young scientists with mentors in campus-affiliated labs.
A NEW STANDARD IN LAB DESIGN

Designed by internationally acclaimed architecture firm Ennead Architects in New York and Bora Architects in Portland, Ore., the $225 million building project was intentionally designed to bring people together and encourage collaboration, integrating insights drawn from visits to leading research facilities. The signature characteristic is research neighborhoods that are light-filled, double-height lab spaces that are truly unique in a wet-lab environment. They feature flexible open bench spaces that enable teams to do related work together, using cutting-edge equipment for rapid prototyping.

PHILANTHROPY AND FUNDING

The Knight Campus was made possible by a $500 million lead gift from Penny and Phil Knight—at the time the largest gift ever made to a public flagship institution—and $70 million in state bonds. Generous gifts from other donors continue to help fulfill the vision. In addition to the building, the $225-million first phase includes elements such as property purchase and rehabilitation of the millrace. Funds not used on building projects directly support operations or faculty and equipment startup and go into an endowment to support operations.

ECONOMIC IMPACT

The Knight Campus, and its focus on biotechnology, sets the UO on a path to the future, taking the community, region and state along with it. The Knight Campus will reshape Oregon’s statewide economy and have a major, long-term impact on economic development, creating new businesses and jobs in Eugene, the state’s third-largest city. Our state will feel the collective momentum as students are trained, faculty signed and companies launched—a biotech incubator that is unlike any other that exists today. Oregon has always been an innovative state, with inventions ranging from the oscilloscope, to chips powering the most advanced supercomputers, to the waffle sole.
Media Fact Sheet:

SUSTAINABILITY

The Knight Campus anticipates LEED Gold certification. The university, in collaboration with the design and construction teams, sought to meet rigorous energy-efficiency standards under the Oregon Model for Sustainable Development, restoring the site for the benefit of the larger ecosystem and enrichment of the campus while providing opportunities for human engagement and the landscape. The facility supports a workplace that fosters social equity, occupant health, and inspiration to support the highest quality of research.

HOW IS THE KNIGHT CAMPUS FUNCTIONING DURING COVID-19?

The Knight Campus, like the rest of the University of Oregon, is operating largely remotely until at least March. However, researchers and many students are still able to follow safety protocols and successfully work and study in the new facility, in step with all guidance from local, state and federal agencies. Safety protocols such as wearing personal protective gear were already standard procedure in labs across campus.

Especially important in this moment, the building can quickly adapt to support new and varied uses to assist in the campus’s mission of developing new health innovations. The university recently announced that the Knight Campus will be home to a COVID-19 testing effort that should more than double the state’s testing capacity by the start of 2021.
The vision was there—now the UO team needed to figure out how to bring it to life.

The October 2016 announcement of Phil and Penny Knight’s gift of $500 million to initiate the Knight Campus for Accelerating Scientific Impact was a defining moment in the University of Oregon’s history—one shaped by the UO’s culture of innovation and collaboration but given impetus on a warm August night in 2015. Less than a month after taking office, UO President Michael Schill invited a few guests to dinner to talk science. Bill Cresko, a professor of biology; Jim Hutchison, the Lokey-Harrington chair in chemistry; and Brad Shelton, formerly the UO’s chief research officer, were key players in the university’s scientific community. Schill asked them to put their heads together, asking the question: “What could we be if we could be anything in the world?” He was asking the scientists for their moon shot.

What emerged was a definition not restricted to any one outcome, but rather an overarching approach to results-driven research guided by a mission to improve health and well-being. The group envisioned a campus where entrepreneurs, marketers, law students, and product designers were embedded along with scientists, post-docs and their support teams; the most significant result could well be the mountain of new ideas.

The vision was there—now the UO team needed to figure out how to bring it to life.

Over the last 20 years, Phil Knight and key donors dared the UO’s department of intercollegiate athletics to be great. They backed up the challenge with extraordinary investments in innovative facilities and personnel that propelled Oregon’s student-athletes to the highest levels of success and enabled the UO’s transformation from a sports program in the middle of the pack to one nationally known for winning the day. The UO team felt the same approach could work for science.

Four months after the original dinner, President Schill’s team, including Vice President for Advancement Mike Andreasen and Cresko, Hutchison and Karen Guillemin, also a biology professor, made the drive to Beaverton, Ore., to deliver their pitch to Phil and Penny Knight.

The Knights committed to the idea with a revolutionary $500 million lead investment—the largest gift ever to a public flagship institution at the time—transforming the future of the UO and science. For more information on the history of the project, visit here.
Michael H. Schill, President, University of Oregon

Michael Schill has served as president of Oregon's flagship public university since 2015 and has focused on three priorities to advance the UO's mission: enhancing academic and research excellence, supporting student access and success, and improving campus experience and diversity. In support of these priorities, in 2016 Schill announced the launch of the Phil and Penny Knight Campus for Accelerating Scientific Impact, a significant initiative to transform innovation at the UO, the first phase of which was anchored by a $500 million gift from the Knights. Under Schill's leadership, the UO partnered with Oregon Health & Science University to seed new academic opportunities to benefit society and create a biomedical data science center focused on finding treatments and cures for cancer.

Robert E. Guldberg, Vice President and Robert and Leona DeArmond Executive Director

Robert Guldberg was hired in 2018 to lead the Knight Campus and serves on the President's Executive Leadership team as Vice President of the University of Oregon. Engaging internal and external stakeholders, he led the creation of the Knight Campus Strategic Plan and has forged new partnerships with Oregon's research universities, health care providers and institutions around the country. He's overseen recruitment of the Knight Campus faculty and launch of the University of Oregon's first engineering degree program. A serial entrepreneur and internationally renowned bioengineer, Guldberg's research program devises new medical devices and regenerative therapies for musculoskeletal tissues damaged by traumatic injury or degenerative diseases such as osteoporosis and osteoarthritis.
Patrick C. Phillips, Provost and Senior Vice President, University of Oregon

provost.uoregon.edu/provost-and-senior-vice-president

As chief academic officer, Patrick Phillips serves as steward of the university’s academic mission, working with faculty and staff members, students, and other stakeholders to ensure the university maintains the highest-possible quality of scholarly activity and educational programs. Prior to this role, Phillips served as the acting executive director of the Phil and Penny Knight Campus for Accelerating Scientific Impact, where he led the design and construction process, established governance and educational policies for the new campus, and initiated and supported new graduate internship and entrepreneurship programs. A noted biologist, Phillips has a long history at the UO, beginning in 2000 when he became a faculty member in the Department of Biology.

Architecture Team

Ennead Architects, Todd Schliemann, FAIA, Lead Designer

Bora Architects, John O'Toole, AIA, Lead Designer

General Contractor

Hoffman Construction, Portland, Ore.
To get an idea of how Knight Campus researchers are focused on impact through biotechnology, here are links to their faculty bios:

Jim Hutchison, Senior Associate Vice President and Lokey-Harrington Chair in the Department of Chemistry and Biochemistry
accelerate.uoregon.edu/jim-hutchison

Bala Ambati, Research Professor
accelerate.uoregon.edu/bala-ambati

Tim Gardner, Associate Professor, Knight Campus
accelerate.uoregon.edu/tim-gardner

Marian Hettiaratchi, Assistant Professor, Knight Campus
accelerate.uoregon.edu/marian-hettiaratchi

Parisa Hosseinzadeh, Assistant Professor, Knight Campus
accelerate.uoregon.edu/parisa-hosseinzadeh

Keat Ghee Ong, Professor, Knight Campus
accelerate.uoregon.edu/keat-ghee-ong

Calin Plesa, Assistant Professor, Knight Campus
accelerate.uoregon.edu/calin-plesa

Jonathan Reeder, Assistant Professor, Knight Campus
accelerate.uoregon.edu/jonathan-reeder
Samuel Lester, Harper, Texas

Bachelor of science in Mechanical Engineering and Material Science from Duke University, 2020

LESTER SAYS: “The hands-on training in the midst of world-class research sets apart the Knight Campus from anywhere I’ve experienced. There is a deep-rooted emphasis in exploring the state-of-the-art facilities available and identifying what’s possible. Each project I am working on already requires a versatile approach, and the expert training I am receiving is jumpstarting me to take advantage of every aspect of the campus.”

KNIGHT CAMPUS PROGRAM: Joint UO-OSU Doctorate Program in Bioengineering

MENTOR OR LAB: Robert Guldberg, Guldberg Musculoskeletal Research Lab

Demi Glidden
Tacoma, Washington

Bachelor of science in biology from Lewis & Clark College, 2016

GLIDDEN SAYS: “The Knight Campus Graduate Internship Program is exactly what I was looking for to launch my career. Even through remote learning, I have been able to cultivate the technical and soft skills needed to be successful in my field. The program’s emphasis on teamwork and collaboration make me feel confident and prepared.”

KNIGHT CAMPUS PROGRAM: Knight Campus Internship Program
Scientific Discovery

The Knight Campus is a bold new model that accelerates the cycle of scientific discovery and development through world-class research, training and entrepreneurship in a collaborative cross-disciplinary environment.

It promises to create new opportunities for students, attract the highest-caliber faculty members and scientists, spur partnerships and economic breakthroughs for the state, and yield significant benefits for society.

Designed for Discoveries

Designed by internationally acclaimed architecture firm Ennead Architects in New York and Bora Architects in Portland, Ore., and built by Hoffman Construction in Portland, Ore., the Knight Campus sets a new standard for lab design and construction. Diverse teams of scientists, researchers, and students are set up in four research neighborhoods in the same building as cutting-edge facilities for imaging, 3-D-printing and rapid prototyping. Situating researchers in close proximity to collaborate on related work allows teams to problem solve and shorten the time from discovery to deployment.
Research and Entrepreneurship

Knight Campus researchers are tackling challenges such as spinal injuries and strokes, rheumatoid arthritis, diabetes, gene synthesis, bone repair and regeneration, and more.

Even before opening the building, Knight Campus faculty were initiating start ups. One company is 3-D-printing patient-specific orthopedic implants, shortening the innovation timeline from years to weeks. A second startup is creating implantable screws and other devices with built-in sensors to monitor healing. And a third company, formed by a faculty member who is both a physician and a scientist, is commercializing a molecule to treat vision disorders such as macular degeneration.

The cross-disciplinary design of the campus, along with cutting-edge facilities for imaging, 3-D-printing and rapid prototyping, supports researchers in reducing the 10-year time period that it takes to move the average biotechnology discovery to market.
Economic Impact

The Knight Campus raises the collective profile of the state in the biotechnology sector, especially among companies that could be attracted to many aspects of the Eugene community.

Its graduate internship program’s strong ties to industry inform relationships with industry, both to train students and to adapt its curricula to meet the evolving demands of industry.

The focus on biotechnology has the potential to reshape Oregon’s statewide economy and have a major, long-term impact on economic development by creating new businesses and jobs in Eugene, the state’s third-largest city.
The Next Generation of Applied Scientists

The Knight Campus offers a doctoral program in bioengineering, in partnership with Oregon State University—the first engineering degree offered by the UO.

The Knight Campus serves graduate students with a graduate internship program that provides a career-focused accelerated master’s degree, with a nine-month hands-on internship; 90% of graduates launch careers in their fields within three months of graduating.

The Knight Campus Undergraduate Scholars Program offers select undergrads a rare opportunity to be immersed in comprehensive research, pairing promising young scientists with mentors in campus-affiliated labs.
Impact of a Private Benefactor

The Knight Campus was made possible by a $500 million lead gift from UO alumnus and Nike co-founder Phil Knight and his wife, Penny. Phil Knight earned his business degree at the UO in 1959. The Knight Campus contribution is the largest gift ever to a public flagship institution and has since been augmented by $70 million in state bonds and additional philanthropy. The Knight's extraordinary act of philanthropy will redefine a public university’s role in scientific discovery and societal impact and have ripple effects across the state, country and world. Operating at the intersection of science and society, the Knight Campus will serve as a biotech incubator that will push the frontiers of science and inspire and accelerate global problem solving.
Regional Partnerships

The collaborative potential of the Knight Campus is already fostering regional partnerships. In 2019, the UO and Oregon Health & Science University launched a joint center for biomedical data science, designed to tackle cancer and other complex diseases with big data. Additionally, the UO recently launched a joint center for biomedical research with PeaceHealth. And the Knight Campus and Oregon State University (OSU)’s College of Engineering have combined strengths on a joint bioengineering doctorate program that will provide students access to courses, facilities and faculty at both institutions. The program, which marks the first degree program in an engineering discipline at the UO, pairs the entrepreneurial drive of the UO’s Knight Campus with OSU’s strong legacy in the field.
The Knight Campus features four research neighborhoods, combining researchers whose work aligns with focus areas in areas such as biomaterials, medical sensors and devices and neural engineering. A neighborhood focused on protein engineering and synthetic biology houses offices and labs of Marian Hettiaratchi, Parisa Hosseinzadeh and Calin Plesa. They work to develop new bio-inspired methods to build biological parts (proteins, peptides, and nucleic acids) and systems with designed properties and predictable behaviors. They repurpose biological cells as factories allowing simple large-scale low-cost manufacturing of complex macromolecules. Together, this allows them to tackle some of society’s biggest challenges, including cancer and other serious diseases.
Robert Guldberg’s work became personal several years ago when his daughter, then a 14-year-old emerging-competitive tennis player, complained of back pain. She was diagnosed with spondylolisthesis—a condition similar to scoliosis in which one vertebra slides over another, usually in the lower back. She underwent spinal fusion surgery to repair the condition. Nine months later, the fusion failed and a second surgery followed.

Guldberg, along with collaborator Ken Gall of Duke University, who is a member of the Knight Campus External Advisory Board, designed a novel spine-fusion cage. The cage's scaffolding had a porosity to the surface that encouraged much faster bone growth, creating fusion. The cage was acquired by a major medical device company in 2017 and is now helping thousands of patients.
A bold new effort designed to speed the pace of biotechnology and scientific discovery and development